bic:fi\gm s

Quick Guide
o® How to create a Notebook with biosignalsnotebooks template

(Creating a Notebook is a very instructive process, not only for the user but also to the creator while
searching for the best approach to transmit knowledge.

Through the created explanations, figures and code, all biosignalsplux users can easily start processing
the signals that they acquired, entering in the amazing world of digital signal analysis while exploring
biosignalsnotebooks environment .

All Notebooks, inside biosignalsnotebooks environment, have a common style that needs to be respected
for the current creations and also for the new Notebooks that will be created.

To simplify the procedure of creating a new Notebook, it is available a specialized module, called “factory”,
inside biosignalsnotebooks Python package .

This document will guide you with the steps description and some illustrative images.

http://biosignalsplux.com/en/learn/notebooks
https://pypi.org/project/biosignalsnotebooks/

S A - Creation of a biosignalsnotebooks project folder, which we proudly call
“biosignalsnotebooks_environment”

Al - Open a command window (type “cmd” at the start menu)

‘ersion 18.0.17134.345]
1. All rights reserve

A2 - Invoke Python console by writing “"python” in the command window

017, 19:01:44) [MSC v.1900 64 bit
nse” for more information.

A3 - Import biosignalsnotebooks package

In 3] biosignalsnotebooks as bsnb

A4 - Generate of the biosignalsnotebooks folder hierarchy (specifying the destination folder)

In [4]

bsnb.opensignals_hierarchy("root/dir/of/bsnb")

A5 - The previous command will generate the following folders and return the file path of
root("root/dir/of/bsnb/biosignalsnotebooks_environment")

Out [5] biosignalsnotebooks_environment root dir

|lll> Categories folder that contains subfolders for grouping the Notebooks
IHHHN>Detect

IHINI>Evaluate

NHINI>Extract

NHHHN>Load

IHIIN>MainFiles

NINNNNNNANAni>aux_files

ITHH>Pre-Process

IHHHH>Record

P Train_and_Classify

IH>Understand

HN>Visualise

|lll>images directory dedicated to store images needed at biosignalsnotebooks environment
IHHHHI>icons

|llI>signal_samples inside this directory are stored a set of signal samples (.txt and .h5 files)
|llI>styles contains (SS files that ensure the correct application of biosignalsnotebooks style

A6 - Creation of a “Notebook Object”, defining as input arguments the category (notebook_type), title
(notebook_title), list of tags (tags), number of stars (difficulty_stars) and notebook description
(notebook_description)

In [6] nb = bsnb.notebook(notebook_type=<str>, notebook_title=<str>, tags=<list>, difficulty_stars=<int>,

notebook_description=<str>)

As a practical example, we will create a Notebook inside “Load" category at 4t difficulty level, which is applicable to EMG signals:

nb = bsnb.notebook(notebook_type="Load", notebook_title="A simple template for creating a Notebook",
tags=["load", “emq", “test"], difficulty_stars=4, notebook_description="An instructive description,
contextualizing the relevance of the
Notebook")

A7 - Storage of the created template inside the biosignalsnotebooks folder hierarchy (created at step 4)

In [7]

nb.write_to_file("root/dir/of/bsnb/biosignalsnotebooks_environment", "File_Name")

Continuing our practical example:
nb.write("root/dir/of/bsnb/biosignalsnotebooks_environment”,)

S B - Edit the generated .ipynb file with Jupyter Notebook

B1 - Open a command window (type “cmd"” at the start menu)
Out []] = command prompt

Microsoft Windows [Version 18.8.17134.345]
(c) 2018 Microsoft Corporation. All rights reserved.

C: Ao,

ke Jupyter Notebook by writing “jupyter notebook" in the command window

[~ Command Prompt - jupyter notebook
s [Version 10.0.17134.345]
on. All rights reserved

2 to skip confirmation).

8888/ ?token= 30l a3fe6add3ed&token=ac9f5ab80add914de6d130b987950a84beba3a3fe6addled
5 NotebookApp] Accepting one-time-token-authenticated c tion from ::1

A Jupyter Notebook server will be executed locally, and a browser window should arise.

B3 - Navigate through folders until reaching the directory where the generated Notebook file is contained
("root/dir/of/bsnb/biosignalsnotebooks_environment/notebook_type/filename”). As we see in points Ab

and A7, notebook_type="Load" and filename="Load_Test".

OUEB] | o] o <[~ T O R ° <

<« - O @ @ localhost8888/tree/biosignalsnotebooks_environment/Categories/Load

To see favourites here, select 3= then 3, and drag to the Favourites Bar folder. Or import from another browser. Import favourites

Z Jupyter Qut
Files Running Clusters Nbextensions
Select items to perform actions on them Upload
[1o |~ W/ biosi _envil I C ies | Load Name ¥ Last Modified
=] seconds ago
[0 & Load_Testipynb seconds ago

Logout

New s~ &

File size

68.3 kB

B4 - Open the previously generated Notebook (.ipynb file)

Out [4] | s] = -~ - T T T

« = O @ @ localhost:8888/notebacks/biosignalsnatebacks_environment/Categories/Load/Load_Testipynb
To see favourites here, select #= then %, and drag to the Favourites Bar folder. Or import from another browser. Import favourites
o t
— Jupyter Load_Test Last checpoint: a few seconds ago (unsaved changes)

File Edit View Insert Cell Kernel Widgets Help Trusted

+ = @ B 4+ ¥ Mrn B C MW (ode ~ @@ | (@ Toggle spell checking on a markdown cell v

Logout

| Kernel O

@Duwnload ngram ﬁ 8 O‘ biaw

A simple template for creating a Notebook

An instructive description, contextualizing the relevance of the Notebook

1- Description of the first instruction
Example of a Markdown cell (supports HTML and some LaTex syntax)

In [1): # Code cell where Python instructions can be applied
print(“Hello and Welcome to biosighalsnotebooks environment !")

Hello and Welcome to biosignalsnotebooks environment |

B5 - Now you can fill the Notebook with instructive and attractive contents !

Out [5]

[I Description of the first instruction

In [1]: # Code cell where Python instructions can be applied
print(“Hello and Welcome to biosignalsnotebooks environment !")

Hello and Welcome to biosignalsnotebooks environment !

Inside Jupyter Notebook environment, four types of cells can be created, however, for doing a Notebook with biosignalsnotebooks

specifications we only need two of them.

For specification of text and descriptions it is necessary to create a "Markdown Cell” (the cell highlighted in Red is an example of this type

of cell). A "Markdown Cell" supports plain text, markdown, HTML language and some syntax of LaTex.
The second type of cell is a “Code Cell” (highlighted in blue), supporting all Python instructions that you imagine.
We can check the Red cell content by double left-click:

<p class="steps"»1 - Description of the first instruction</p>
Example of a Markdown cell (supports HTML and some LaTex syntax)

As can be seen we define a paragraph with <p> tag. It is always necessary to include class="steps” as an argument. This class is defined

inside a (5SS file, which ensures, for example, that the text will appear in bold.

The second line print a text segment in blue, due to the specification of class="color]" as attribute. There are available the following colours:

e class="colorl" 2>

o class="color2" - "Example of Text"
e class="color3" >

e class="color4" >

e class="color5" >

e class="color6" >

o class="color7" > "Example of Text"
e class="color8" >

e class="color9" >

e class="color10" >

e class="color1l" = “Example of Text"
e class="color12" 2>

To apply the changes made to the cell content it is necessary to press together Ctrl + Enter.

Each cell in formed by an "input” part and an "output” segment, where the results can be shown. But sometimes is important to hide

information to the final user.

For example, in all Notebooks there are a last cell that contains some JavaScript instructions, responsible for executing all cells
automatically, when we load the Notebook.

But this cell should not be visible to the user. To ensure this “invisibility" in the HTML version of the Notebook, we need to access the cell
metadata:

: Ju pytef Luad_Test Last Checkpoint: 32 minutes ago (unsaved changes) Logout

File Edit] Insert Cell Kernel Widgets Help Trusted | Kernel O

+ = @ B 4 ¥ MHrn B C | P Markdown ~ B | @ Toggle spell checking on a markdown cell v

View

I Toggle Header
Toggle Toolbar
Toggle Line Numbers 2

Cell Toolbar 3

View

Toggle Header

Toggle Toolbar

Toggle Line Numbers

Cell Toolbar » None 3
Raw Cell Format
Slideshow
Attachments

Tags

Now, at each cell, a button is available at top right corner for editing metadata of the cell.

Edit Metadata

Edit Metadata

Edit Metadata

Edit Metadata

Let's access the metadata of the last cell of the Notebook

In [3]: Edit Metadata

%%html
<script>
// AUTORUN ALL CELLS ON NOTEBOOK-LOAD!
require(
['base/js/namespace’, 'jquery'],
function(jupyter, $) {
$(Jjupyter.events).on("kernel_ready.Kernel”, function () {
console.log("Auto-running all cells-below...");
jupyter.actions.call('jupyter-notebook:run-all-cells-below"};
jupyter.actions.call('jupyter-notebook:save-notebook');
)
T
H
</script>

As can be seen, the metadata content is in a json format, with | L. .\ vetadats
pairs of keys and the respective values.

Manually edit the JSON below to manipulate the metadata for this cell. We recommend putting custom

For now, the “tags" key is the most relevant. Here we can specify metadata attributes in an appropriately named substructure, sa they don't conflict with those of others.
one of three values: “hide_both" (for hiding both input and
output in HTML version of Notebook), "hide_in" (for hiding the
input segment of the cell) and "hide_out” (for hiding the output).

{
“tags": [
"hide_both"

B
"trusted”: true

[T B ST

The current cell will be invisible to the user, since both input and
output were hidden.

V1.0. Under continuous development...

